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Abstract- This paper considers a multiple-access channel with
two state components, where the first sender knows only the
first state component, the second sender knows only the second
component, and the receiver knows both components. The notion
of adaptive-rate capacity is introduced to characterize the set of
achievable rates when the state is fixed in each transmission block
but can vary between blocks. Single-letter characterizations of
the adaptive-rate capacity region for the discrete-memoryless and
the Gaussian models are established. The expected adaptive sum-
rate capacity is compared to the ergodic sum-rate capacities when
the senders have complete and partial state information, and to
the sum-rate capacity of the compound MAC. This comparison
shows that the adaptive sum-rate capacity can be close to the
ergodic capacity and much higher than the sum-rate capacity of
the compound MAC.

I. INTRODUCTION

The multiple-access channel (MAC) with state has been the
subject of much study in recent years due to its relevance
in wireless communication systems. For example, in [1], [2],
and the references therein, the Gaussian MAC with complete
knowledge of the channel state at the senders and the receiver
is studied. The sum-rate capacity was characterized in [1]
and the capacity region was later established in [2]. Complete
knowledge of the state at the senders, however, is an unrealistic
assumption in wireless communications as it requires either
communication between the senders or feedback control from
the access point. In time-division-duplexed (TDD) wireless
communication systems, such as IEEE 802.11 wireless LAN,
each sender estimates its channel state from a training signal
that is broadcast from an access point to all the senders.
Complete knowledge of the state at the receiver, on the other
hand, is quite realistic since the access point can estimate
the state of all senders from a training signal. This practical
consideration has motivated the investigation of a MAC where
each sender knows its own state while the receiver knows
all the senders' states. In [3], [4], and [5] this setting was
investigated with the goal of achieving the sum-rate capacity
of the Gaussian fading MAC via random access. In [6] and
[7], the discrete-memoryless MAC (DM-MAC) with partial
knowledge of the state at the senders and the receiver is
studied. In [6], it is assumed that two compressed descriptions
of a non-causal channel state are available at the senders,
and the capacity region is established when one description
is a function of the other. This result is generalized in [7] by

considering both the causal and non-causal CSI in a unified
manner.

In this paper we consider a 2-sender DM-MAC with two
state components, where the first sender knows only the first
state component, the second sender knows only the second
component, and the receiver knows both state components. We
further assume an i.i.d state model, where the state is fixed
throughout each transmission block, but can vary between
different blocks. This setting will be referred to as MAC
with distributed state information (MAC-DSI). We define the
adaptive-rate capacity region to be the set of achievable rates
when each sender's rate is allowed to adapt to its own channel
state. Unlike ergodic capacity, where the probability of error
averaged over all state realizations is required to approach
zero with increasing block length, here we require that the
probability of error approaches zero for every state realization.
We establish the adaptive-rate capacity region for both the
discrete-memoryless and the Gaussian channel models. The
expected adaptive sum-rate capacity is then compared to the
corresponding ergodic sum-rate capacity when the state infor-
mation is completely known to the senders and the receiver
[1], and when only distributed state information is known at
the senders (which is a special case of Theorem 5 in [7]).
Additionally, the adaptive sum-rate capacity is compared to
the sum-rate capacity of the compound MAC, which is the
highest rate supportable in every channel state (e.g., see [8]).
We show that the adaptive sum-rate capacity can be close to
the ergodic sum-rate capacity and significantly better than the
sum-rate under the compound channel assumption.

II. PROBLEM FORMULATION

A 2-sender DM-MAC with distributed state informa-
tion consists of a finite set of state pairs Sl x S2
with a joint pmf p(Sl,S2) on them, and a set of DM-
MACs (X1,X2,P(Y X1,X2,s1,s2),Y), one for each state pair
(Si,S2) e Si x S21. Without loss of generality, we assume
that the two state components have the same cardinality S.

Similar to the block fading channel model defined in [9],
we assume a state model where the state (Sl, S2) is fixed
during each transmission block and changes in an i.i.d. manner

'The extension of the definitions and results to the K-sender case is in
principle straightforward.
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Wayside channel

Wayside channel

Fig. 1. Discrete memoryless MAC with distributed state information.

according to the state pmf p(Sl, S2) between different blocks.
The channel is memoryless; thus, without feedback the channel
can be represented as

n

( 1z 2: S1, S2) =IP (Yt lXlt, X2t, Sl : S2)* (l
t=1

We assume that the receiver knows both state components si
and S2 but that Sender 1 knows only si and Sender 2 knows
only S2 before transmission commences (see Fig. 1).

This problem can be thought of as a compound MAC
with distributed state information. However, the compound
approach, where the codebook (but not the rate) is allowed
to depend on the state can lead to a very low throughput (see
Section Ill-A). Here, we allow both the rate and the codebook
to adapt to each sender's state component to achieve high
throughput for each state pair (Si, S2). Specifically, we define a
(2nRl(i),.... 2nRi(S), 2nR2(i) ... ., 2nR2(S), n) code for the
DM-MAC-DSI to consist of the following components:

1) 2S message sets W)V(sl) = [1, 2nR (si)] and W2(s2)
[1, 2nR2 (s2)J for (Sl, 32) C Si x S2, where each pair of
messages W(Sl), W(S2) is uniformly distributed over
[1, 2nRi(s)] x [1, 2nR (S2)];

2) two encoders, each encoder maps each message wk C
Wk(sk) into a codeword Xn (Wk, Sk); and

3) a decoder that maps each received sequence yn for each
(Si, S2) pair into an estimate (w1, w2).

The average probability of error for each state pair (Si, S2) is
defined as

P(n) s2) v: 2-n(Ri (sl)+R2 (s2))
W1 (SI),W2 (S2)

P{(Wl, W2)#(W, W2) Wl, W2, Si, S2 -

The 2S rate tuple (Rl(1),. ,Ri(S), R2(1),... , R2(S))
is said to be achievable if there exists a sequence of
(2nR,(1) ...2nR,R(S) 2nR2(i) ... 2nR2(S), n) codes with

p( 1)(2) -> 0 for all (S1,52) e Si x S2. This guarantees
reliable transmission for each state pair without being overly
pessimistic as in the compound channel approach. We define
the adaptive-rate capacity region of the DM-MAC-DSI to be
the closure of the set of all achievable 2S rate tuples.

Note that this problem does not in general break up into
a set of independent MAC capacity problems for each state
pair because each sender knows only one state component

Fig. 2. DM-MAC-DSI with two states per sender.

and thus the rate it uses must be achievable for all possible
state components (and the rate for each state component) of
the other user. To further explain this key point, we note
that the capacity region for the above setting is the same
as that of the multi-MAC exemplified for S = 2 in Fig. 2.
As shown in the figure, the multi-MAC has four senders and
four receivers coupled into four MACs (each corresponding
to a state component pair). Each sender has an independent
message and each receiver decodes the message pair destined
to it. Clearly, the capacity region of this channel, which is
the closure of the set of all achievable rate quadruples, is the
same as that of the MAC with distributed state information
considered here. Note, however, that in our problem only one
of the four MACs is present during a transmission block.
Although the receiver knows which MAC is present, each
sender needs to consider multiple MACs as it has only partial
knowledge of the state.

In addition, we consider the AWGN MAC-DSI, where the
received signal at time t is given by

(3)Yt =Hk,tXk,t+Zt
k=l

Here Xk,t is the transmitted signal from sender k, Hk,t
is the fading state of sender k, and Zt is white Gaussian
noise independent of the channel state. We assume a long-
term average transmitted power constraint P, thus we allow
power allocation over many transmission blocks as long as the
average power over all blocks is no more than P.

III. DM-MAC WITH DISTRIBUTED STATE INFORMATION

In this section we establish the capacity region of the DM-
MAC-DSI and provide an example to compare the expected
sum-rate capacity to its ergodic counterpart and to the sum-rate
capacity of the compound MAC.

Theorem 1: The capacity region of the DM-MAC-DSI
defined in Section 2 is the set of all rate 2S-tuples
(Rl(1), .. , Ri(S), R2(1), , R2(S)) that satisfy the in-
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equalities

Ri(si) < min I(X1; Y X2, Q, si,s') (4)
s2GS2

R2(s2) < min I(X2; YlXl, Q, s/,s2) (5)
S ES,

Ri(si) + R2(s2) < I(X1, X2; Y|Q, Sl, 82), (6)

for all (Sl, 32) and a set of joint pmfs of the form
p(q)p(xl Isl,q)p(X2 82, q), (S1, 32) C S1 X S2 -

Proof: We first prove the achievability of any rate tuple
in the region.
Random code generation: Fix a set of joint pmfs
p(q)p(xi q, 31)P(X2 q, 32), (31, 32) e Si x S2. Randomly
generate a sequence qn according toHt 1 p(qt). Conditioned
on qn and for each state si C Si and w, C Wi(si), gener-
ate 2nRi (si) conditionally independent Xn (wi si) sequences
according to Ht7=1p(xit qt,si). Similarly, generate 2nR2(s2)
conditionally independent X2 (W2 32) sequences according to

H7t= P(X2t qt,S2) and w2 C W2(S2) for each S2 C S2.
Encoding: Each encoder observes its state and so to send wi,
Sender 1 sends Xn(wl si), and to send w2, Sender 2 sends
2n(wW2382) .

Decoding: The decoder, knowing both si and S2, declares
that (w1, w2) is sent if it is the unique message pair such
that (qn,Xn si(w& ),Xnw(C22), yn, Sl S2) C A(n), otherwise
it declares an error. Here, A(n) denotes the set of weakly
typical sequences [10].
The average probability of error for each state component

pair can be bounded as for the DM-MAC (e.g., see [10]) to
show that P(n)(l,~2) -*0 as n -> oc, provided that

Ri(si) < I(Xi; Y X2, Si, S2)
R2(s2) < I(X2; Y Xl, Sl, S2)

Ri(si) + R2(s2) K I(Xl, X2; Y Sl, S2).

(7)

(8)

Since p(n)(s,s2) -> 0 for all possible pairs of (S1. S2) C
Si x S2 with codewords and rates that depend only on the
distributed state information, the individual rates are upper-
bounded by

Ri(si) < min I(Xl; Y X2,si,s2)
s2 ES2

R2(s2) < minI(X2;Y|Xl,s ,s2).
S/ ES1

(9)

(10)

However, for the sum-rate, p(n)(S1, S2) -> 0 as long as (8)
is satisfied and therefore no minimization is needed. This
establishes the achievability of the rate region defined in (4)-
(6).

Proof of the converse requires showing that given any set
of (2nRl (1) ... 2nRi (S) 2nR2 (1) . . ., 2nR2 (S), n) codes with

P 02) R, (Ri(1), ,Ri(S),R2(1),... ,R2(S)) is
in the region defined in (4)-(6). By Fano's inequality,

H(Wi (si) yn, 31,32) < nfEn
H(W2 (s2) yn 31,32) < nfEn,

where , -> 0 as n -> oc, for all (Sl,S2) G S1x S2. The
above inequalities imply that

H(Wl(si ),W2(s2) Yn, 51, S2) < 2nEn
for any (Sl, S2) C S1 X S2.

Using these inequalities and steps similar to those used in
the converse proof for the DM-MAC (e.g. in [10]), we obtain

Ri(si) < ZI(XLt;YtLX2t,S1,S2)+cEn (11)
t=1
n

R2(s2) < n Z I(X2t; YtLXlt S , S2) +En (12)
t=1
n

Rl(si) + R2(S2) < E3 I(Xlt, X2t; Yt Si, S2) + En, (13)
t=1

for all pairs (Si, 32) C Si X S2. If we let Q be uniformly
distributed over 1, , n and independent of Xn, X2n, yn, and
define X1 = X1Q, X2 = X2Q, and Y = YQ, then,

I n

Ri(si) < Z I(Xlt; Yt|X2t, Sl~ S2) +En
t=l

I n

=- j I(Xlt; YtLX2t, Sl , S2, Q = t) +En
it=

= I(XlQ;YQ X2Q,Sl,S2,Q) +En
= I(Xl;Y|X2,sl,s2,Q).

(14)

(15)

(16)
(17)

Therefore, for every state component pair (Si, S2), the follow-
ing inequalities must be satisfied:

Ri(si) < I(Xi; Y|X2, sl, s2, Q)
R2(s2) < I(X2; Y X1, Sl, S2, Q)

Ri(si) + R2(s2) < I(Xl, X2; Y sl, s2, Q),

(18)

for some joint pmf p(q)p(xi si,q)p(X2lS2,q). Since these
three inequalities should be satisfied for all state pairs
(Si, S2) C Si x S2, the rate of Sender 1, Ri(si), must satisfy
all the inequalities in (18) with different S2 C S2, and so we
have

Ri(si) < min I(X1; YlX2,si,s', Q).
2ScES22

Similarly, the rate of sender 2, R2(S2) must satisfy

R2(s2) < min I(X2;Y|Xl,s ,s2,Q).
S ECS1

This completes the proof of the converse.U
Note that unlike the ergodic MAC capacity region, which
can be described by the union of sets that are defined by 3
inequalities, the adaptive-rate capacity region is defined by
2S + S2 inequalities. For example, the rate of Sender 1 for
Si = 1, i.e., Ri(1), is constrained by S sum-rate inequalities
in (6) as well as the individual rate inequality in (4). Moreover,
the sum-rate constraint in (6) is not necessarily tight for
each (S1, 32) pair, because for any fixed state component, the
inequality must be satisfied for all possible states of the other
state component.
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In the i.i.d. state model, the state pair is assumed to be fixed
during each block of n transmissions, where n is large enough
to achieve low probability of decoding error. Assuming that the
state pair (Si, S2) is drawn i.i.d. according to the probability
mass function pmf p(Sl, S2), the expected sum-rate capacity
of the DM-MAC-DSI is defined as

Csum,dsi max Es1s2 (Ri(Sl) + R2(S2)).
p(q)p(xl IS,q)p(X2 S2 ,q)

(19)
To obtain this sum-rate, one needs to consider not only
the sum-rate inequality in (6) but also the individual-rate
inequalities in (4) and (5), because this sum-rate inequality
may not be tight.
We shall compare this expected adaptive sum-rate capacity

to the ergodic sum-rate capacities when the senders know both
state components [1] and when each sender knows only its
state. Recall that the ergodic capacity region for the first case,
when the state consists of two components, is the set of all
rate pairs (Ri, R2) such that

Ri < I(Xl; Y|X2, Si, S2, Q) (20)
R2 < I(X2;Y|Xl,Sl,S2,Q) (21)

R1 +JR2 < I(Xl, X2; Y Si, S2' Q), (22)

for some joint pmf of the form p(q)p(xilsl,S2,q)
P(X21 2, s 1, q).

The ergodic capacity region when each sender knows only
its state has a similar form except that the allowed joint pmf
is of the form p(q)p(xi si, q)p(X2 82, q). This follows from
Theorem 5 in [7] by setting ST, = Si, ST2 = S2, and SR
Sl, S2.

A. Binary DM-MAC with Distributed State Information

Consider the binary DM-MAC with two independent state
components in Fig. 3. Each state component is distributed as a
Bern(/22)2. The states 0 and 1, respectively, may indicate the
absence and presence of a packet to transmit at each sender
in a random access channel. This channel can be also viewed
as a Gilbert channel where the state is either good or bad.
The adaptive-rate capacity region in Theorem 1 is achieved

when we set Xl, X2 - Bern(1/2) and reduces to the set of
all rate quadruples (Ri (0), R, (1), R2(0), R2(1)) such that

Ri(0) < O, R2(0) < O, R1(1) < 1,R2(1) < 1

Ri(0) + R2(0) < O, Ri(0) + R2(1) < 1,R1(1) + R2(0) < 1

R1(1) + R2(1) < 1. (23)
Since R1 (0) = R2 (0) = 0 and Ri (1) = 1-R2 (1) from (23),
the expected adaptive sum-rate capacity is given by

Ri(0) + R2(1) R1(1) + R2(0) R1(1) + R2(1)
A + A + A4 4

1
2 (Rli(I) + R2(1)) =0.5.

4

2Bern(p) refers to a Bernoulli random variable with parameter p.

If we were to treat this channel as a compound channel,
each sender would need to design a code for the worst state
pair, which in this example corresponds to the (0, 0) state.
Note that in this state pair, the sum-rate is equal to zero.
Therefore, allowing rate adaptation can greatly increase the
expected sum-rate. It is easy to see that the ergodic sum-rate
capacity for this channel is 0.75 for both the case when the
senders know both states and when each sender knows only its
own state. The expected adaptive sum-rate capacity is smaller
because it is defined under a more stringent requirement on the
probability of error. If coding over multiple blocks is allowed,
a random inter-leaver can transform this i.i.d. state channel
into an ergodic channel. This increases the expected sum-rate
capacity to 0.75 but at the expense of much longer coding
delay.

IV. GAUSSIAN MAC WITH DISTRIBUTED STATE
INFORMATION

The adaptive-rate capacity region can be easily established
for the Gaussian case as it can be readily shown that Gaussian
signaling is optimal. The following proposition states the
expected adaptive sum-rate capacity.

Proposition 1: The expected adaptive sum-rate capacity can
be obtained by solving the convex optimization problem

max E3 p(hi, h2) [Rl(hi) + R2(h2)]
(h1,h2)

s.t. Zp(hk)Pk(hk) <P, k= 1,2
hk

Ri(hi) < 1 102 1 + Ihi2Pi(hi)) ,h2 N2~ h

R2(h2) < 110921+l h2 P2(h2)) Vh

Rl(hi) + R2(h2) <

log2 (1 + lhi Pi(hi) +Nh2 2(h2)

Pi(hi) > O, Vhl
P2(h2) > O, Vh2

(24)

(25)

(26)

(27)

Vhj, h2

where P is the long-term power constraint, p(hi, h2) is the
joint pmf of the fading coefficients, and Pk(hk) is the power
allocated by Sender k to state realization hk, k = 1, 2.
Unlike the general DM-MAC-DSI, here the other sender's
effect can be completely eliminated at the decoder by knowing
the other sender's transmit signal and the states; therefore, the
inequalities in (25) and (26) require no minimization (unlike
the inequalities (4) and (5)). Note that the sum-rate inequality
(27) must be satisfied for all fading state pairs (hi, h2) and so
the inequality is not tight in general.
We compare this adaptive sum-rate capacity to the ergodic

sum-rate capacities for complete and distributed knowledge
of the state at the senders. When the senders know both
state components, the ergodic sum-rate capacity is obtained
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Fig. 3. Binary DM-MAC-DSI with independent states.

by solving the following convex optimization problem [1]:

max E3 p(h1,h2)2log2 [1l+ k=1 hk 2Pk(hl,h2)1
(h1,h2)

s.t. E: p(hi ,h2)Pk(hi, h2) <P k =1,2
(h1,h2)

Pk(hl, h2) > O, V(hi, h2), k = 1, 2,

where P is the power constraint and Pk (hi, h2) denotes the
power allocated by Sender k for state (hi, h2). When each
sender knows only its state, the ergodic sum-rate capacity has
the same form except that the power of each sender can depend
only on its state.

Fig. 4 compares the expected adaptive sum-rate capacity
for the AWGN case to the ergodic sum-rate capacity and the
sum-rate capacity under the compound channel setting, where
codebooks are designed to support the least-capable state pair.
We assume that the noise power is N = 1, the average power
constraint is P = 1, and the fading coefficients H1, H2 are
uniformly distributed over {1, 6}2. Thus, the signal to noise
ratio (SNR) varies between -10 and 25dB. For a given SNR,
the noise power becomes (1 + 62)/2SNR. The solutions to
the above convex optimization problems were obtained using
the CVX 3 and MOSEK 4 optimization packages.
As before, if we relax the constraint on the error prob-

ability per block, then we can achieve the ergodic sum-
rate capacity using inter-leaving. The figure shows that the
expected adaptive sum-rate capacity is close to the ergodic
capacity with distributed state information. Therefore, there is
no great loss in the sum-rate capacity for two senders. How-
ever, this loss increases as the number of senders increases.
The compound channel capacity in this case is equivalent
to the rate supported in the worst channel state, which is
(hi, h2) = (1, 1). Therefore, without allowing the power
allocation over blocks, the compound sum-rate capacity is

1log2 (1 + 2SNR/(1 + 62)), which is much smaller than the
sum-rate obtained from Proposition 1.

V. CONCLUSION

We formulated the problem of a multiple-access channel
with distributed state information, where the receiver knows

3Matlab Software for Disciplined Convex Programming,
http://www.stanford.edu/ boyd/cvx, October 2006.
4Mosek ApS Optimization Software. http://www.mosek.com, October 2006.
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Fig. 4. Sum-rates in a Gaussian MAC with discrete states.

the entire state but each sender knows only a component
of it. We established the adaptive-rate capacity region under
the i.i.d state model, and showed that this adaptation can
achieve a significantly higher sum-rate capacity than the more
pessimistic compound channel approach.

Several interesting questions remain. For example, we only
considered discrete fading states, so it would be interesting
to extend the results to a continuous fading model such as
Rayleigh fading. Further, the fading Gaussian MAC with
distributed-state information requires further attention because
of its many special characteristics and its practical importance.
For example, the random access channel model can be com-
bined with the Gaussian channel to accurately model wireless
random access networks such as IEEE 802.11.
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